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Fachbereich Physik, Univenitit Kaiserslautem, D-6750 Kaiserslautem, Federal Republic 
of Germany 

Received 19 November 1990 

Absirnri. iviiine’s meihod is appiied io ihe iiiii equaiion, i.e. ihe SchtGdinger equation Cor 
a periodic one-dimensional potential. The method allows a compact discussion of the 
organization and parameter dependence of the stability bands as well as an efficient 
numerical computation of the band edges. As an example a class of potentials which show 
a transition from two to one minimum per period is studied numerically. Furthermore, 
periodic solutions of the Milne equation are discussed and constructed. 

1. Introduction 

In this paper we study the one-dimensional Hill equation [l], which appears in 
numerous problems in physics. Typical examples are the classical harmonic oscillator 
with periodic parametric excitation [Z] 

d’x 
d t2  
- + w ’ ( t ) x  = o  

where w ( t + T ) = o ( t ) ,  or the propagation in periodic structures, i.e. the one- 
dimensional Schrodinger equation 

2 d I) 2m .~ ~~. . .  
dx’ h - + - ( E -  V ( x ) ) # = O  (ij 

with a periodic potential V ( x + L )  = V ( x ) .  A well-known example from mathematical 
physics is the Mathieu equation. Despite their appearance in many textbooks on 
mechanics or quantum mechanics the Hill equation is still not fully understood, as 
the recent appearance of various articles on this subject [3-101 demonstrates. 

The purpose of the present paper is to develop certain aspects of the so-called 
‘amplitude-phase’ method in more detail, namely, to study the connection between 
the Hill equation and the Milne equation [ l l ]  under periodic conditions. The Milne 
equation has been studied before in many articles, references to which can he found 
in previous papers by one of the authors (HJK) [12-141 covering the non-periodic 
case (bound and resonance states for the Schrodinger equation). Although being 
nonlinear, the Miine equation offers various advantages in comparison io ihe originai 
linear equations and provides a powerful tool for many applications, including numeri- 
cal ones. Here we demonstrate its usefulness for the investigation of the Hill equation. 

t Permanent address: Department of Physics, CC67 (1900) La Plata, Argentina. 
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A second aim of the present study is a discussion of the existence, properties and 
numerical construction of periodic solutions of the Milne equation. Such solutions are 
essential for a forthcoming article about the quasienergy (Floquet) spectrum of the 
(periodically) parametrically excited quantum mechanical harmonic oscillator [ 151. 

2. The Hill and the Milne equations 

The Hill equation (e.g. see [l, 161) in its standard form is given by 

Y’YX) + Q(X)Y(X)  = 0 (3) 

Q(x+ T )  = O b ) .  (4) 
i n  our discussion we wiii Furthermore assume that Qix j  satisfies the symmetry condition 

a x ) =  (5) 

where Q(x) is periodic with period T: 

In particular we will discuss the periodic Schrodinger equation, i.e. 

where the periodic, symmetric potential has a global minimum at xo = 0 in the interval 
[-T/2, T/2]. There is an intimate connection between the linear equation (3) and the 
nonlinear Milne equation [ 111 

The general solution of (3) can he constructed from a single (arbitrary) solution of 
(7) as 

A x )  = b p b )  s i n ( d x ) + p )  (8) 
where b and p are arbitrary constants, and q(x)  is related to p(x) by the integral 

On the other hand the general solution of Milne’s equation (7) can be written in 

(10) 
‘The constants A, B and C are reiated to the -Wonskian W oi y,(x) and y2(xj by 
AB- C2= W-’ and determined by the initial condition for p(x,) and p’(xo) at some 
point x,. It should be stressed that they-as well as y,(x), y2(x) and W-are generally 
dependent on the parameters of Q(x), i.e. energy dependent for the case of the 
Schrodinger equation (6). 

In terms of (10) the phase integral ~ ( x )  can be evaluated in closed form [14]: 

terms of two independent solutions yI .  y2 of the linear equation (3) [14,17,18] as 

P ( X )  = (Ay:(x)+ B y b )  +~CY~(X)YZ(X))”’. 
~. 

Unless otherwise stated, we will in the following always use symmetric solutions of 
Milne’s equation, i.e. we choose the initial condition p’ (0)  = 0. 
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The use of the Milne equation has various advantages despite its nonlinearity. 
Numerical integration is straightforward and the solutions are well behaved and 
smooth, in particular for so-called ‘classical initial conditions’ 

p ( 0 )  = Q-”*(o) and p’(O)=O (12) 
where 0 is the position of the maximum of the Q ( x )  function (a minimum of V ( x ) ) .  
In this case p- ’ (x )  closely resembles the classical wavenumber Q”’(x) [12,13]. 

For symmetric solutions the constant p is equal to 5712, for antisymmetric solutions 
we have p = O  (note that p ( - x ) = p ( x )  and r p ( x ) = - q ( - x ) ) .  Furthermore one can 
construct solutions yL+’(x), which vanish at the end of the unit potential box, 

by imposing the condition 

@ ( E )  = 2rp ($) = 2 lor’* & = ( n  + 1)T n=O,1,2 , . . __  (14) 

Equation (13) is only satisfied for special values E = E: and (14) is recognized as the 
quantization condition [12] for the box potential 

T 
V ( x )  for 1x1 <- 

2 
T’ 

for 1x1 2- 1- 2 

C(x) = 

It will be helpful to construct solutions yL-) (x)  with vanishing derivatives at the box 
boundaries: 

y:-’.(*$) =o. 

The energies satisfying (16) are denoted as E = E ; .  

From (8) we obtain 

y ’ ( x )  = b p‘sin(rp+p)+- cos(rp + p )  
1 ( P 

and (16) leads to the condition 

tan(:) = A  

for symmetric and 

for antisymmetric solutions. is termined by the p. nction at the 

and the index n is defined by n r < @ < ( n + l ) m  for A>O,and by ( n - l ) l r < @ < n r  
for A < 0. The functions y F ’ ( x )  are symmetric for even n and antisymmetric for odd 
n and n counts the number of zeros inside the unit potential box 1x1 < TJ2.  Each of 
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the two sets E: and E ;  is non-degenerate. However, a member of E ;  can be degenerate 
with one of E ; .  A direct consequence of (18), (19) and (14) are the inequalities 

J A Nhiez el al 

& ; - , S E ; < & ;  forA>O 
&;-2<&;s&;_, for A < 0. (21) 

Hence, a degeneracy occurs for A = 0 and is restricted to the case E ;  = 
Figure 1 shows results for the Mathieu equation 

Q(x) = E - 2q cos(2x). (22) 
The phase integral @(E) as well as A(E) are given for a value of q = -1.5. Figure 2 
shows the typical smooth behaviour of the Milne solutions when classical initial 
conditions are used (E  = 8 and E = 28, with q = -4). The Milne solutions are non- 
oscillatory, contrary to the y(x )s ,  and P - ~ ( x )  closely resembles the classical wave- 
number Q"2(x), which is also shown for comparison. It should be stressed that the 
observed behaviour is typical only for classical initial conditions and potentials struc- 
turally similar to (22). Different initial conditions (see [14]) and more complicated 
potentials can lead to a different behaviour of @ ( E )  and A(€) (numerical examples 
are given below). For energies not exceeding the potential maximum, i.e. E < 8 for 
q = -4, part of the potential region becomes classically forbidden. A semiclassical 
approximation of p - ' ( x )  for this case is discussed in [12]. 

Several properties concerning the function @ ( E )  have been proven (e.g. see [14] 
and references therein): 

(i) @ ( E )  = (n  + 1 ) ~  has a unique solution E. for n = 0.1,. . . (23) 

(ii) @(E.) < @ ( & + I )  (24) 

(iii) F I E " > O  

Energy 

Figurel. ~(E)andA(E)asfunaionsoftheenergyfortheMathieupotentialwifhq=-1.5. 
Classical initial conditions are used. 
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-1.0 -0.5 0 0.5 1 .o 
2 x / n  

Figure 2. T h e  function p - ' ( x )  for the Mathieu potential ( q  = -4) for energies E = 8 and 
28. Also shown is the classical wavenumber Q'''(x) (dotted curves). 

It is possible for @ ( E )  to decrease with increasing energy, but such a behaviour is 
rare and confined to small energy intervals because of (26). 

3. The charneteristic exponent and the band structure 

Since Q(x) in (3) is T-periodic, it follows from Floquet's theorem that there exists a 
so-called Floquet solution of the form 

F+(x)  =e""p(+x) (27) 
where p(x)  is a periodic function with period T and U a complex number known as 
the characteristic exponent. Since Q(x) satisfies the symmetry condition (9, 

F _ ( x )  = F+(-x)  = e-i"xp(-x) (28) 
is another solution of (3), not necessarily independent of F+(x) .  Using (27) one obtains 
the following relations between F+ and F-: 

F, (x)  = eLIYTF,(x+ T )  (29) 

Because of the symmetry Q(x) = Q(-x) we will in the following choose a symmetric 
Milne solution denoted here as p, (x) .  The general solution of (3)  is now (compare to 

y ( x )  ap,(x)(e"s'"'+ a e - w x )  1 (32) 
where a and a are arbitrary constants related to the initial conditions. From (31) and 
(32) one obtains after a little algebra an expression for a: 

( 8 ) )  

a2+2ag+  1 = 0 (33) 
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where the g-function is defined as 

I A NGez  et al 

1 .  
A 

g ( E )  =cos @--sin @ 

with 

and 

(34) 

(35) 

(compare (14) and (20)). Defining furthermore the function 

p ( E )  = cos @ + A  sin @ (37) 

we find from (30) the Floquet exponent v, related to p by 

cos( UT) = p( E ) .  

The function p is an oscillating function of the energy E. The characteristic exponent 
U takes real values only if p satisfies the condition lpl s 1. In other cases U is a complex 
number. According to Floquet’s theory real values of v are associated with bounded 
(stable) solutions and complex us with unstable ones. Hence the range ofthe p-function 
indicates stability and instability zones. The g-function is related to p by 

p2= 1 + (1 -A2)g2. (39) 

and has a reverse behaviour, in fact v is real if Igl> 1. 
In spite of the fact that @ and A are in general dependent on the initial condition 

for p., the p-function is independent of it as expected (see appendix 1). We conclude 
the p and g allow an immediate characterization of zones with stable and unstable 
solutions in the following way: 

stability zone (‘band‘) 
(40) 

V € C  IPI > 1 - k  < 1 instability zone (‘gap’). 

The conditions lpl= 1 or (gl= 1 can be easily used to calculate the band edges 
numerically. 

Figure 3 shows the behaviour of p and g as a function of E calculated for the case 
of the Mathieu equation (22) with q = -4. Solving the equation [ P I =  1 numerically, 
the band edges of the lowest three bands as shown in figure 3 are obtained in agreement 
with the results given in [19]. 

In the remainder of this section we will discuss the band/gap structure in terms of 
the Milne solutions. Adopting the notation of Magnus and Winkler [l], the stability 
boundaries are denoted as 

(41) 

V E W  l@l< 1C*lSl’ 1 

E;< E ; <  E ; <  E ; $  E ; <  E ; <  E ; $  E ~ s . .  . 
and the nth stability band is given by the closed interval 
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10 , I 

-101 ' I 
2 4 6 8 10 12 14 16 

ENERGY 
Figure 3. The figure shows a typical behaviour of @ and g as functions of E forthe Mathieu 
potential with q = -4. Classical initial conditions arc used. 

These boundaries depend on the parameters of the system and only the gaps can shrink 
to zero. In our case the boundaries are determined by the conditions lpl= Igl= 1. 
Rewriting p and g as 

p ( E )  = J G P c o s ( @ - / 3 )  

g(E) ==sin(@ - 8 )  
(43) 

with /3 =tan-' A, we see that the values of Ipl at the maximum are bounded by 
from above and by 1 from below, consequently the gaps (11.1 > 1 )  can shrink to zero 
only when A = 0. The bands ( l g l a  1) can never disappear because the maximum of lgl 
exceeds and A-2 is always different from zero. Note that for a finite potential 
V ( x )  both p and p', and hence also A, are finite. These findings are of course in 
agreement with the results at (41), (42). In addition it should be noted, that A = O  
implies 1p1< 1, and a diverging g. Therefore A can only vanish inside the bands or at 
their boundaries. 

From (14) we conclude that at the eigenvalues s i  of the unit box we have 

p:=p(E;)  = g ( s T )  = -(-1)" (44) 

i.e. these energies appear at the gap boundaries and vice versa g ( E ) = p ( E )  implies 
E = E:. In addition we find 

with A" =A(&:) and 

Because of d@/dEJ.:>O (see (26)) the sign of (46) is determined by A". For An > o  
the E:  constitute an upper band boundary and for An < O  a lower boundary. 
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As is well known, the one-dimensional bound state energies are strictly non- 
degenerate and hence the E: can never cross if parameters are varied. They thus 
constitute the basic skeleton of the band/gap structure. On the other hand we have 

p ; = ~ ( € , ) = - g ( E , ) = ( - l ) "  (47) 

for energies E ;  satisfying conditions (18) or (19), i.e. there exist solutions yL-)(x) with 
n nodes and vanishing derivatives at  the box ends. These are the only energies satisfying 
p ( E ) = - g ( E ) =  1. For many cases the E ; ( € : )  form the lower (upper) boundaries of 
the bands (compare (421, see also the discussion of the band structure by Harrell [3]). 
If a parameter of the system is varied, A can change sign and the band structure 
changes. A numerical example is given in figure 4 for the potential 

V(x,S)=tq(cosScos2xfs in6cosx)  (48) 

for q = -4. Here the band/gap structure is shown as a function of the parameter S, 
varying from 0 to ?r (a similar study for this potential has been published almost SO 
years ago [ Z O ] ) .  For all values of S the potential is 27i-periodic. In fact (48) can be 
regarded as the first two terms of a Fourier expansion of a general Zwperiodic potential. 
For S = 0 and a it agrees with the wperiodic Mathieu potential (22) and the spectra 
are identical. For S = ?r/2 we also have a Mathieu potential, but with doubled period. 
Between these values the potential shows a more complicated behaviour with more 
than one minimum per period for ltan SI ~ 4 .  Some representative examples are shown 
in figure S. The basic features of the band/gap structure shown in figure 4 can be 
understood as follows. Increasing 8 from 0 destroys the wsymmetry and the degeneracy 
of E &  and E ; ~ - , ,  thus opening a new gap inside the bands. This band splitting is 
analogous to the level splitting in a double-well potential. The new gap region grows 
with increasing 8, whereas the higher gaps of the V(x ,  0)-potential decrease until they 
shrink to zero close to S = r / 4 ,  where the band/gap edges cross (A vanishes). More 
such crossings are observed for higher energies and increasing values of S. Note that 
only band edges satisfying E ;  = E ; - ,  can cross, as discussed in section 2. 

I I 
0 n / 4  n I 2  314 n n 

6 
Figure 4. Band/gap structure for the potential V(x ,  S )  as a function of the parameter 6 
for q = -4. 



On the solution of Hill’s equation using Milne’s method 2077 

12 em 1jm 1 j f q  

0 

d 

-12 -12 -12 
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5 6 7 

12 

6 = n 1 2  

-12 6 lm 
0 0.2 0.4 0.6 0.8 1.0 

6 = 2 n / 3  llm 0 

, v , e ) i  
-12 

0 0.2 0.4 0.6 0 6  1.0 

6 = 5 n / 6  l:m 0 

, v , f)i 
-1 2 

0 0.2 0.4 0.6 0.8 1.0 

12 

0 6m 
“ y  , ,”, , g q  

-12 
0 0.2 0.4 0.6 0.8 1.0 

Figure 5. Potential V ( x ,  S )  inside the period - w  < x < ?r for various values of the parameler 
8, namely S = kwI6,  k = 0.1,. . . ,6.  

4. Periodic solutions of the Milne equation 

Properties such as the zeros and the number of zeros of the solution of the Hill equation 
or the characteristic exponent in the Floquet representation can be easily derived if 
we know explicitly periodic solutions of the Milne equation. 

In this section we will construct the periodic and symmetric Milne solution in terms 
of an arbitrary real symmetric one. To do  this we choose two independent Hill solutions 
defined as 

and by (10) the general solution of the Milne equation can be written as 

~(x )=(As in2rpp , (x )+Ecos2~p , (x )+2Cs in  ~p,(x)cos~p,(x))1’2p,(x).  (50) 

The general symmetric solution is obtained by requiring symmetric conditions, i.e. 
C=O. Then A B - C 2 =  F V 2 = 1  implies A = I / E  and (50) now reads 

(1-A2) cos(2rpp,(x))+l+A2 
ZA 

where A is related to the initial condition ;(O). 
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Now fixing A = J ( g + l ) / ( g - l ) ,  where g depends on p,(x)  by (34), (51) satisfies 
;( T/2) = 0, that is, ;(x) is a T-periodic function. With this value of A we get 

This constitutes the symmetric and periodic solution of Milne’s equation in terms of 
an arbitrary symmetric one, and we find that p, (x)  is: (i) a real or pure imaginary 
function if Igl> 1 (‘band‘); (ii) a complex function if Igl< 1 (‘gap’). 

It also follows that for a periodic solution p,(x) the boundary term A defined in 
(20) vanishes, i.e. A,=O. comparing (37) and (38) immediately gives the desired result 

and again we find that U E R  if lgl> 1 (‘band’) and U E C  if lgl<l (‘gap’). Inserting 
p,(x) into (53) we obtain 

But by (34) and (38) 

then one can rewrite U as 

which is equivalent to (38). 

periodic Milne’s solution. Denoting the zeros of pp by 2, one sees from (52) that 
One interesting point for analysing the following is related to the zeros of the 

cos 2p,( i )  = g (57) 
because p,(x) itself cannot vanish as is proven in appendix 2. 

In principle, (57) allows two kinds of solutions: (i) real solutions if Igl s 1,  i.e. in 
the energy gaps, and (ii) imaginary solutions if lgl> 1, i.e. in the energy bands. But 
since p. and (p. are both real only the first case is realized, i.e. p,(x) has zeros in the gaps. 

Let{~:).=,,,,.,~bethesetofenergyvaluesdefinedby(44)andN(E) thequantum 
number function defined by (see [12,14]) 

N ( E ) = - q s  (; - , E  ) =- @‘,E’. 
77 

Assuming A >  0 the E: constitute an upper band boundary (see section 3) then N ( E : )  
takes integer values and since pp,(x, E : )  s ps( T/2, E : )  the inequality 
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Equations (57), (59) and (60) define the number of zeros on the band edges Nu.b.= 
[n/2]+ 1 and = [n/2] with n = 1 , .  . . , for the upper and lower band respectively, 
where [f] denotes the integer part of 1: If A. changes sign this behaviour is inverted, 
as was already mentioned in section 3. 

The &) function satisfies the relation (see (59)) 

L 

then (57) is satisfied once for n = 1, twice for n = 2 and so on. In other words, the 
number of zeros of p J x )  or y ( x )  is given by the band number n. 

5. Concluding remarks 

In the present article we tried to show the usefulness of the Milne approach for treating 
a well-known and well-studied problem: the Hill equation or, equivalently, the periodic 
Schrodinger equation. We restricted ourselves to a few points of general interest and 
investigated in some more detail the question of periodic Milne solutions, which are 
of basic importance for our current work on the quasienergy spectrum of time- 

broader range of applications, for instance: 

the spectrum of a long but finite chain of identical box potentials. 

potentials, e.g. one-dimensional binary alloys and ordered or random crystals. 

been derived [19,21-241. The Milne method offers a very convenient way to introduce 
semiclassical approximations for the band spectrum (for previous semiclassical 
approximations in context with the Milne equation see [IZ]). 
Work along these lines is in progress. 

Penodicaiiy dnveii yuanium osc;iiaiuts i ijj ,  T,ie iVfiiiir: mei'nod has, hu-wevar, a much 

(i) The Milne method can be used in a straightforward way to analyse and compute 

(ii) The same technique can also be used to study chains with different box 

I:::\ r- ..--'_..I "&:nl-- -a...:.-ln-4cmt n.-.-.nui-otin... t- th- !-"-A O - ~ A - . -  ha..- (",, 11, "'l,I"YU LLLL.b.LCI  DCII..CIIIDI,LLI, 'l~.yL""""LLLL"'L" I" b u r  "Llll" "YC'L'Y1.l . Im"r 
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Appendix 1 

Let p ( x )  be a solution for Milne's equation given in (9) 

p ( ~ )  = [ A Y ~ ( x )  + + Z C Y , ( X ) Y ~ ( X J J : ~ ~ .  (Al . l )  

We need only the symmetric solutions for constructing the @-function, i.e. p ( x )  must 
satisfy the condition 

p' (0)  = 0. (A1.2) 
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Using (Al . l )  and (A1.2) we get C=O and 

Y d X )  = Y l ( - x )  

Y h )  = -yz(-x) 

and using the restriction (A1.3) we get, for A and @, 

(A1.3) 

A = P ‘ ( f )  P ( f )  =AY, (:) Y ;  (5) +By,(  $ )A(  :) (A1.4) 

The Wronskian evaluated at T I 2  is 

w = Y l ( f )  Y ;  ( f )  - y ,  ( f )  y ;  ($) 
and inserting (A1.4)-(A1.6) into (36) we can rewrite the p-function as 

(A1.5) 

(A1.6) 

(A1.7) 

which is independent of the initial conditions for p, (x ) .  Furthermore, ,L is shown to 
be identical with the so-called Floquet determinant (up to a factor of 2). 

Appendix 2 

Let y , ,  y ,  be two real linear independent solutions of 

Y ” ( X ) +  Q ( X ) Y ( X )  =o. (A2.1) 

Then the Wronskian W of y ,  and y ,  is real and different from zero. In particular, one 
can choose solutions satisfying 

Yl(X0) = 1 YZ(X0) = 0 

YXXo)=O Y X X d  = 1 

P ( X )  =   AY:(^)+ B Y : ( x ) + ~ C Y , ( X ) Y , ( X ) ) ‘ / ~  (‘42.3) 

(‘42.2) 

with W = 1. Then the general real solution of the Milne equation (7) can be written as 

where the three real constants A ,  E,  C coupled by 

A B - C ~ =  w-2 (A2.4) 

are determined by the initial conditions of p. 

Lemma. A real solution of the Milne equation (7) has no zeros. 

Proof: Assume p has a root at i, i.e. 

Ay: ( : )+  B y : ( 2 ) + 2 C y l ( 2 ) y 2 ( i )  = O  

or 

( A y : ( i )  + By:(i ) ) ’= 4C2y:(2)y:( i ) .  

(A2.5) 

(A2.6) 



On the solution of Hill's equation using Milne's method 2081 

Using (A2.4) this gives 

Since both terms in (A2.7) are squares of real numbers they both must vanish. Because 
W Z  0, y,(f)  and y ~ ( f )  cannot both be zero. Let us assume that yl ( f )  = 0 and y2(.-i) f 0, 
then ( -B~: ( f ) )~=o,  and B = 0. Now, because Wz > 0 this implies C2< 0 in contradic- 
tion to C being real. Similar for the case y2(.-i) = 0. Therefore the assumption p2( f )  = 0 
c2nnnt be mrrect., which pmve. the !emma. 
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